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Abstract. The thermodynamics associated with structural changes in binary mixtures has been
examined in search of relations which connect Darken stability or the concentration–concentration
fluctuations to the thermodynamic response functions. New relations have been derived. These
are the counterpart of Ehrenfest relations in an extended form for second order phase transitions
in binary mixtures. It has been proved that the structural change inevitably causes instability of a
binary mixture with respect to the concentration fluctuations. The new relations make it possible that
the instability brought about by structural change can be evaluated in terms of the thermodynamic
functions.

1. Introduction

Universal thermodynamic relations associated with the phase transition have been extensively
discussed (Pippard 1964). Among them, the best known are the Clapeyron–Clausius equation
for the first order phase transition and the Ehrenfest relations for the second order phase
transition. The latter were extended by Pippard to continuous structural transitions and called
Pippard relations. According to the extension by Pippard, the constant pressure specific heat
(CP ), isothermal compressibility (κT ) and thermal expansion coefficient (αP ) diverge towards
aλ-point in the same powers of temperature.

For the binary mixture, close correlation has been experimentally found between the
phase transition and the stability of a binary mixture. A phase transition such as the
ferromagnetic transition, order–disorder transition, superfluid transition in the liquid3He–4He
mixture and polymeric transition in mixtures of liquid sulphur is known to stimulate the two-
phase separation (Meigering 1963, Knobler and Scott 1984, Nishizawaet al 1979). The
miscibility gap is pulled along the Curie line which intersects to a two-melt phase boundary
and consequently a horn or kink appears at the crossing, the tip of which is known to be
a tricritical point in thex–T plane (Knobler and Scott 1984). The phenomena have been
discussed almost independently using various specific models.

In this paper, new universal thermodynamic relations have been derived. These relations
connect the constant pressure specific heat and isothermal compressibility to Darken stability.
Darken stability is the reciprocal of the concentration–concentration fluctuations. The relations
prove that the excess part of Darken stability caused by structural changes are definitely negative
and, thus, the structural change in a binary mixture stimulates a tendency towards phase
separation. It is shown that they are the counterpart of Pippard relations in a binary mixture
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undergoing a structural change. The author has applied the derived relations to the Se–Te and
Rb–Pb systems to estimate the extent of instability caused by a structural change due to the
Peierls distortion mechanism in the former (Gaspardet al 1987) and by the dissociation of a
poly-anion in the latter (Tumidajskiet al 1990).

2. Thermodynamic relations

Assuming that structural change can be described by an order parameterC(T , P, x), whereT
is temperature,P pressure andx the fraction of a constituent, the Gibbs free energy (G) for
a binary mixture which undergoes structural change can be represented as (Davies and Jones
1953, Tsuchiya 1991a)

G = G(T , P, x, C(T , P, x)). (1)

Further assuming thatG is differentiable up to the second order with respect to any valuable
of state andC. C(T , P, x) can adjust itself so as to makeG a minimum. Thermal equilibrium
requires

(∂G/∂C)T,P,x = 0. (2)

The total differential (dG) of the Gibbs free energy is given by

dG = (∂G/∂T )P,x,C dT + (∂G/∂P )T,x,C dP + (∂G/∂x)T,P,C dx = −S dT + V dP +1µ dx
(3)

whereS, V and1µ represent entropy, volume and the difference in the chemical potentials
for the corresponding constituents, respectively. These thermodynamic quantities are also a
function ofT , P , x andC. Systematic calculation of the total differential of all of them has
been done keeping one of the variables of state constant. The variable which has been taken
constant is omitted so as to avoid complexity of the resulting equations.

2.1. S andV as a function ofT andP

Bearing in mind thatS andV can take, respectively, the formS(T , P,C) andV (T , P,C), the
following equations can be written.

dS = (∂S/∂T )P,C dT + (∂S/∂P )T,C dP + (∂S/∂C)T,P dC. (4)

Dividing by dT and assumingC to be constant,

(∂S/∂T )C = (∂S/∂T )P,C + (∂S/∂P )T,C(∂P/∂T )C. (5)

It should be mentioned that the equation

(∂u/∂v)w = (∂u/∂v)t + (∂u/∂t)v(∂t/∂v)w
holds for a function of two variablesu(v, t) when the variations are taken along a path defined
byw(v, t) = constant. Then the left-hand side of equation (5) may be rewritten as

(∂S/∂T )C = (∂S/∂T )P + (∂S/∂P )T (∂P/∂T )C. (6)

Equating the right-hand side of equations (5) and (6), and using the Maxwell relation,
(∂V/∂T )P = −(∂S/∂P )T , equation (7) is obtained.

(∂S/∂T )P − (∂S/∂T )P,C = {(∂V/∂T )P − (∂V/∂T )P,C}(∂P/∂T )C. (7)
Denoting the constant pressure specific heat and volume expansion coefficient brought about
by the structural changes, respectively, asδCP andδαP , equation (7) is rewritten as

δCP = T V δαP (∂P/∂T )C (8)

where(∂P/∂T )C is the constantC slope in theT –P plane.
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In a similar way, it is not difficult to obtain the following relation.

(∂V/∂P )T − (∂V/∂P )T,C = {(∂V/∂T )P,C − (∂V/∂T )P }(∂T /∂P )C (9)

which can be rewritten as

δκT = δαP (∂T /∂P )C. (10)

Here δκT is the change in the isothermal compressibility caused by the structural change.
Combining equations (8) and (10)

δCP δκT = T V (δαP )2. (11)

Equations (8), (10) and (11) are analogous to the Pippard relations for the second order phase
transition.

It should be emphasized that the change in the compressibility,δκT , and the change in
the specific heat,δCP are always positive, whileδαP is of undetermined sign depending
on the sign of(∂V/∂C)T,P . A qualitative argument is as follows:δκT takes a form
−V −1(∂V/∂C)T,P (∂C/∂P )T (Tsuchiya 1991a). If the volume contracts upon a structural
change((∂V/∂C)T,P < 0), such a structural change proceeds with an applied pressure
((∂C/∂P )T > 0) and vice versa. Then δκT is always positive and from equation (11)
δCP is also positive. The requirements arise from the thermodynamic stability condition,
(∂2G/∂C2)T ,P,x > 0, and the proof has been given by Prigogine and Defay (1954).

2.2. V and1µ as a function ofP andx

A similar argument may be applied to the volumeV (P, x, C) and to the difference in the
chemical potential1µ(P, x, C).

(∂V/∂P )x − (∂V/∂P )x,C = {(∂V/∂x)P,C, − (∂V/∂x)P }(∂x/∂P )C. (12)

Denoting the difference in the partial volumes for the respective constituents brought about by
the structural changes asδ1V , equation (12) is rewritten as

δκT = V −1δ1V (∂x/∂P )C (13)

where(∂x/∂P )C is the constantC slope in theP–x plane. The following equation is obtained
for 1µ,

(∂1µ/∂x)P − (∂1µ/∂x)P,C = {(∂1/∂P )x,C − (∂1µ/∂P )x}(∂P/∂x)C. (14)

Defining Darken stability asD = (∂1µ/∂x)T,P and denoting the contribution brought about
by the structural change asδD, equation (14) is reduced to

δD = −δ1V (∂P/∂x)C. (15)

From equations (13) and (15) we obtain

δκT δD = −V −1(δ1V )2. (16)

The original Darken excess stability is defined by(∂2Ge
mix/∂x

2)T ,P , whereGe
mix is the

excess mixing Gibbs free energy (Darken 1967). It differs fromD used here by the factor
RT/{x(1− x)}, the contribution coming from the ideal entropy of mixing, whereR is the
universal gas constant.
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2.3.1µ andS as a function ofT andx

Let us consider the difference in the chemical potential1µ(T , x, C) and the entropy
S(T , x, C). Equation (17) is obtained for1µ as a function ofT andx.

(∂1µ/∂x)T − (∂1µ/∂x)T,C = {(∂1µ/∂T )x,C − (∂1µ/∂T )x}(∂T /∂x)C. (17)

Writing the difference in the partial entropy for the respective constituents brought about by
the structural changes asδ1S, equation (17) is rewritten as

δD = δ1S(∂T /∂x)C (18)

where(∂T /∂x)C is the constantC slope in thex–T plane. ForS we have

(∂S/∂T )x − (∂S/∂T )x,C = {(∂S/∂x)T,C − (∂S/∂x)T }(∂x/∂T )C (19)

and

δCP = −T δ1S(∂x/∂T )C. (20)

From equations (18) and (20),

δCP δD = −T (δ1S)2. (21)

From equations (11), (16) and (21),δD in terms ofδαP is given by

(δD)2 = V −2(δ1V )2(δ1S)2/(δαP )
2. (22)

The darken stability function is related to the concentration–concentration fluctuations
Scc(0) byD = RT Scc(0)−1 (Bhatia and Thornton 1970). Hence, the negative sign of right-
hand side of equations (16) and (21) proves that the structural changes in a binary mixture
inevitably enhances instability with respect to the concentration fluctuations.

3. Application to the Se–Te system and Rb–Pb system

Since the test of relations analogous to the Pippard relations in 2.1 has been reported elsewhere
(Tsuchiya 1991a), the author deals with the applicability of new thermodynamic relations
(16) and (21). Extensive studies on the thermodynamic properties associated with structural
changes in the liquid Se–Te system have been carried out. This enables the author to apply
the equations to the aforesaid system. For this system the order parameter is the change of
the average co-ordination number of Se and Te atoms from two to three. In figure 1 the
isotherms of the isothermal compressibility (Tsuchiya 1991a), molar volume (Tsuchiya 1988)
and difference in the partial volume at 600◦C have been plotted. The temperature 600◦C has
been chosen so as to make it convenient to determine the excess quantities involved in the
analysis. Effects due to structural changes (appearance of peak/dip) appear in the mid-range
of composition at the above mentioned temperature. The base line forδκ has been drawn with
a binary hard sphere model for the compressibility evaluation (Tsuchiya 1991a). A straight
line connecting the values for Se and Te has been chosen as a base for1V because the molar
volume as a function of composition changes almost linearly in the respective sides. Figure 2
shows the results of the constant pressure specific heat (Kakinuma and Ohno 1987), mixing
entropy (Tsuchiyaet al1996) and the difference in the partial entropy at the same temperature.
The specific heat of Se has been chosen for the base line forCP because liquid Se does not
undergo structural changes at the corresponding temperature.1S in equation (21) consists
of the contribution from the derivative of mixing entropy and the difference in the entropy of
constituents. Assuming a random mixture of Se and Te, the base line forδ1S is given by
− ln[x/(1−x)]+const, where const represents the difference in the entropy of pure Se and Te.
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Figure 1. Isothermal compressibilityκT (Tsuchiya 1991a), molar volumeV (Tsuchiya 1986) and
difference1V in the partial molar volumes for the liquid Se–Te system at 600◦C. δκT andδ1V
represent the contribution brought about by the structural change.

It was determined by fitting the curve to the experimental data along the Se side. Its value is
0.66(R−1). The value obtained is not in contradiction with the one expected from the entropy
difference in the structural change in liquid Te (Tsuchiya 1991b).

From the excess quantities denoted in figures 1 and 2,δD can be readily calculated either
from equation (16) or (21). The results have been presented in figure 3. Keeping in view,
the uncertainty of assignments of baselines and experimental procedures undertaken by other
authors,δD values obtained through relations (16) and (21) are in good agreement. The sign
of δD is negative as predicted by equations (16) and (21) and the phase separation tendency
develops in the liquid Se–Te system at the composition where the constant specific heat and
isothermal compressibility have a peak.

In the previous paper (Tsuchiya 1997), it was shown that the concentration–concentration
fluctuationsScc(0) for a binary alloy undergoing a structural change are given by

Scc(0)
−1 = (RT )−1{(∂2G/∂x2)T ,P,C + ∂((∂G/∂x)C/∂C)T,P (∂C/∂x)T,P }. (23)

This equation is equivalent to equation (17) and the second term is equal toδD. The first term
represents expected Darken stability if there were no structural change. This can be estimated
at low temperatures which are far from the transitional temperature region. The lower part
of figure 3 comparesScc(0), one with the presentδD together with the Gibbs free energy at
low temperatures (Tsuchiya 1986) and the other calculated at 600◦C with a inhomogeneous
structure model (Tsuchiyaet al 1996). Both results agree very well.
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Figure 2. Constant pressure specific heatCP (Kakinuma and Ohno 1987), mixing entropySmix
(Tsuchiyaet al 1996) and difference1Smix in the partial mixing entropy for the liquid Se–Te
system at 600◦C, whereR is the universal gas constant.δCP andδ1S represent the contribution
brought about by the structural change.

Another application has been made to the Rb–Pb system in which the polyanion compound
Rb+

4Pb4−
4 plays an important role in the physico-chemical properties and structure (Tumidajski

et al1990). Figure 4 shows the experimental excess specific heatCmixp and the mixing entropy
Smix (Tumidajskiet al 1990).Cmixp , defined as the deviation of the specific heat from a linear
interpolation between those for Pb and Rb, has a large maximum andSmix has a pronounced
minimum around 50 at.% Rb. The results have been interpreted as being due to the polyanion
compound in the melt. It is also known (Tumidajskiet al1990) that the excess stability for the
equiatomic alkali plumbides is rather small (about 300 kJ mol−1 or less) as compared with, for
example, the value for Tl2Te, about 2500 kJ mol−1 at 600◦C (Nakamura and Shimoji 1971).
A model assuming a dissociation of Pb4−

4 anions has been proposed to account for anomalous
behaviour of the specific heat of the Pb–Rb system as a function of both composition and
temperature (Geertsma and Saboungi 1995). In the course of calculations, it has been shown
that the dissociation of the clusters gives a negative contribution to the Darken stability. They
have suggested that the negative contribution would explain the small value of the stability.
However, the exact amount of the contribution has not been obtained either experimentally or
theoretically so far.

The lower graph in figure 4 shows the difference1Smix in the partial entropy for Pb and
Rb. In the calculations of1Smix , Smix on the Pb and Rb sides were, respectively, fitted to
fourth order and second order polynomials. The solid curve in the figure for1Smix shows a
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Figure 3. The Darken instabilityδD brought about by the structural changes in the Se–Te system
at 600◦C. Solid circles and open circles have been estimated, respectively, from equations (16) and
(21). Scc(0) (circles) obtained by the presentδD together with the Gibbs free energyG0 expected
if there were no structural changes (Tsuchiya 1986) is compared with the theoretical results with an
inhomogeneous structure model (solid curve) (Tsuchiyaet al 1996). The dotted curve represents
Scc(0) corresponding toG0 (the first term of equation (23)).

baseline forδ1S which has been calculated using equation (2.3) of Geertsma and Saboungi
(1995) and together with the degree of dissociation as a function of composition therein.
It is noted thatδ1S jumps from negative to positive at 50 at.% of Rb in contrast to the
results for the Se–Te system shown in figure 2. From these results(∂x/∂T )C in equation
(20) is positive on the Pb side and negative on the Rb side, becauseδCp is always positive.
Since(∂x/∂T )C = −(∂C/∂T )x(∂x/∂C)T and (∂C/∂T )x > 0 (the dissociation proceeds
with increasing temperature),(∂C/∂x)T changes its sign from negative to positive around
50 at.% Rb and thusC as a function of composition takes a minimum at there. This prediction
agrees with the model by Geertsma and Saboungi (1995) in which the calculated composition
dependence of the degree of dissociation actually takes a minimum around 50 at.% Rb. By
definitionδCp is slightly different fromCmixp . However, the difference can be neglected to a
first approximation becauseCmixp arises mainly from the dissociation of polyanion compound
of Pb and Rb.δD evaluated using equation (21) is plotted in figure 5. The scanty data for
numerical differentiation on the Rb rich side and the fairly large uncertainty (±20%) inCmixp

(Tumidajskiet al1990) would result in a large difference inδD values at 50 at.% Rb evaluated
in both composition ranges. Anyway it can be suggested thatδD is −50 to−60 kJ mol−1

around 50 at.% Rb and the contribution from the dissociation of the polyanion compound is
about 20% of the experimental Darken excess stability. It would be of interest to compare the
presentδD with the numerical calculations of equation (B5) in Geertsma and Saboungi (1995)
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Figure 4. Excess specific heatCmixp , mixing entropySmix (Tumidajskiet al 1990) and difference
1Smix in the partial mixing entropy for the liquid Pb–Rb system at 605◦C, whereR is the
universal gas constant.δCP andδ1S represent the contribution brought about by the dissociation
of polyanion Pb−4

4 .

Figure 5. The Darken instabilityδD brought about by the dissociation of polyanion Pb−4
4 in the

Pb–Rb system at 605◦C estimated from equation (21).

to confirm their model and to obtain further insight into a dissociation scheme of the polyanion
compound in liquid alkali group IV alloys.
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4. Discussion and conclusions

It may be observed that there is a marked similarity between the new equations derived in
2.2 and 2.3, and those in section 2.1. The latter are analogous to Ehrenfest relations or their
extension, i.e. Pippard relations. The reason is that all these equations are related to the second
partial derivatives of the Gibbs free energyG(T , P, x, C(T , P, x)) with respect to any pair
of the variables of state in which an order parameterC(T , P, x) plays a role of constraint.
The relations have been derived without any specification on the structural change. ‘Structural
change’ rather than ‘phase transition’ has been used because the relations derived may be
applied to rapid structural changes which can be interpreted as crossover in the restricted sense.
The only assumption is that the Gibbs free energy can be differentiable to the second order with
respect to the variable of state. In this sense the validity of the new thermodynamic relations
(equations (16), (21) and (22)) is quite obvious, and it may be possible to apply them to any
structural transition in a binary mixture except in the close vicinity of a sharp transition like a
λ-point. It is, therefore, concluded that the structural change in a binary mixture inevitably leads
to the instability with respect to the concentration fluctuations. This gives a thermodynamic
explanation for the interference between Curie lines and binary miscibility gaps. It explains
why the miscibility gap is pulled along a Curie line to result in a horn or a kink in the boundary
of two-melt separation. In equation (23), it could happen that the magnitude of the second term
δD becomes large enough to exceed the first. This may lead to the appearance of a two-melt
phase in thex–T plane; otherwise, the miscibility gap could not be expected. A very small two-
melt phase with a looped boundary in the liquid S–Te system is an example (Tsuchiya 1994).

From the experimental side, on the one hand, it is not easy to directly measure the
constant pressure specific heat at high temperatures and, hence, to determine the isothermal
compressibility which requires estimation of the dilatation term or the difference in the
isothermal and adiabatic compressibility. On the other hand, the measurements ofSmix by
an EMF method and density at high temperatures are comparatively not so difficult. For such
a situation the new thermodynamic relations have potential for evaluation ofδCP andδκT
in such a way that firstlyδD can be determined from equation (22), and thenδCP andδκT
through equations (16) and (21) in terms ofδD. They would provide useful information on
structural changes in the melt at high temperatures.

It is not difficult to derive equations for the free energy involving the external magnetic
field H . The excess contribution in the magnetization and magnetic susceptibility brought
about by structural changes or magnetic transitions can be related to other thermodynamic
quantities in the same way.

In summary, new thermodynamic relations have been derived that connect the excess
constant pressure specific heat and the excess isothermal compressibility to the excess Darken
stability caused by structural change. It has been proved that the contribution to the Darken
stability caused by structural change is definitely negative. This implies that structural changes
always cause instability of a binary mixture with respect to the concentration fluctuations. New
relations make it possible that the excess contribution in the Darken stability caused by the
structural change can be evaluated quantitatively using thermodynamic quantities. Many ap-
plications of new defined relations would be expected to a wide variety of continuous structural
changes. This also includes dissociation processes in compounds forming binary mixtures at
high temperatures to the superfluid transition in the liquid3He–4He system at low temperatures.
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